Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets
نویسندگان
چکیده
Diffusion MRI has become an established research tool for the investigation of tissue structure and orientation. Since its inception, Diffusion MRI has expanded considerably to include a number of variations such as diffusion tensor imaging (DTI), diffusion spectrum imaging (DSI) and Q-ball imaging (QBI). The acquisition and analysis of such data is very challenging due to its complexity. Recently, an exciting new Kalman filtering framework has been proposed for DTI and QBI reconstructions in real-time during the repetition time (TR) of the acquisition sequence. In this article, we first revisit and thoroughly analyze this approach and show it is actually sub-optimal and not recursively minimizing the intended criterion due to the Laplace-Beltrami regularization term. Then, we propose a new approach that implements the QBI reconstruction algorithm in real-time using a fast and robust Laplace-Beltrami regularization without sacrificing the optimality of the Kalman filter. We demonstrate that our method solves the correct minimization problem at each iteration and recursively provides the optimal QBI solution. We validate with real QBI data that our proposed real-time method is equivalent in terms of QBI estimation accuracy to the standard offline processing techniques and outperforms the existing solution. Last, we propose a fast algorithm to recursively compute gradient orientation sets whose partial subsets are almost uniform and show that it can also be applied to the problem of efficiently ordering an existing point-set of any size. This work enables a clinician to start an acquisition with just the minimum number of gradient directions and an initial estimate of the orientation distribution functions (ODF) and then the next gradient directions and ODF estimates can be recursively and optimally determined, allowing the acquisition to be stopped as soon as desired or at any iteration with the optimal ODF estimates. This opens new and interesting opportunities for real-time feedback for clinicians during an acquisition and also for researchers investigating into optimal diffusion orientation sets and real-time fiber tracking and connectivity mapping.
منابع مشابه
Optimal real-time q-ball imaging with incremental recursive orientation sets
INTRODUCTION: High angular resolution diffusion imaging (HARDI) requires more diffusion-weighted (DW) measurements than traditional diffusion tensor imaging acquisitions, but it can resolve some fibre crossings. This comes at the price of a longer acquisition time, which can be problematic for clinical studies involving children and people inflicted with certain diseases. Excessive motion of th...
متن کاملReal-Time MR Diffusion Tensor and Q-Ball Imaging Using Kalman Filtering
Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an increm...
متن کاملIncremental multi-class semi-supervised clustering regularized by Kalman filtering
This paper introduces an on-line semi-supervised learning algorithm formulated as a regularized kernel spectral clustering (KSC) approach. We consider the case where new data arrive sequentially but only a small fraction of it is labeled. The available labeled data act as prototypes and help to improve the performance of the algorithm to estimate the labels of the unlabeled data points. We adop...
متن کاملOn Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)
In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...
متن کاملIdentification and Prediction of a Moving Object Using Real-Time Global Vision Sensing
This paper presents a global vision based optical sensing system for identifying and intercepting moving objects. Using a color thresh-holding identification algorithm, the system can detect the position and angle of moving objects. The vision processing is done in real-time, effectively within 16.67ms sample time of an interlaced NTSC video image. Incremental tracking is employed to save on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2009